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Abstract
This work presents the first extensive study of single-

node performance optimization, tuning, and analysis
of the fast multipole method (FMM) on modern multi-
core systems. We consider single- and double-precision
with numerous performance enhancements, including
low-level tuning, numerical approximation, data struc-
ture transformations, OpenMP parallelization, and al-
gorithmic tuning.

Among our numerous findings, we show that op-
timization and parallelization can improve double-
precision performance by 25× on Intel’s quad-core
Nehalem, 9.4× on AMD’s quad-core Barcelona, and
37.6× on Sun’s Victoria Falls (dual-sockets on all sys-
tems). We also compare our single-precision version
against our prior state-of-the-art GPU-based code and
show, surprisingly, that the most advanced multicore
architecture (Nehalem) reaches parity in both perfor-
mance and power efficiency with NVIDIA’s most ad-
vanced GPU architecture.

1 Introduction
This paper presents the first extensive study of

single-node performance optimization, tuning, and
analysis of the fast multipole method (FMM) [5] on
state-of-the-art multicore processor systems. We target
the FMM because it is broadly applicable to a variety
of scientific particle simulations used to study electro-
magnetic, fluid, and gravitational phenomena, among
others. Importantly, the FMM has asymptotically op-
timal time complexity with guaranteed approximation
accuracy. As such, it is among the most attractive solu-
tions for scalable particle simulation on future extreme
scale systems. This study focuses on single-node per-
formance since it is a critical building-block in scalable
multi-node distributed memory codes and, moreover, is
less well-understood.

Approach: Specifically, we consider implementa-
tions of the kernel-independent FMM (KIFMM) algo-
rithm [16], which simplifies the integration of FMM
methods in practical applications (Section 2). The
KIFMM itself is a complex computation, consisting
of six distinct phases, all of which we parallelize and
tune for leading multicore platforms (Section 4). We
develop both single- and double-precision implemen-
tations, and consider numerous performance enhance-
ments, including: low-level instruction selection, SIMD
vectorization and scheduling, numerical approximation,
data structure transformations, OpenMP-based paral-
lelization, and tuning of algorithmic parameters. Our
implementations are analyzed on a diverse collection of
dual-socket multicore systems, including those based on
the Intel Nehalem, AMD Barcelona, Sun Victoria Falls,
and NVIDIA GPU processors. (Section 5).

Key findings and contributions: Our main contri-
bution is the first in-depth study of multicore optimiza-
tions and tuning for KIFMM, which includes cross-
platform evaluations of performance, scalability, and
power. We show that optimization and OpenMP par-
allelization can improve double-precision performance
by 25× on Intel’s Nehalem, 9.4× on AMD’s Barcelona,
and 37.6× on Sun’s Victoria Falls. Moreover, we com-
pare our single-precision results against the literature’s
best GPU-accelerated implementation [9]. Surprisingly,
we find that the most advanced multicore architecture
(Nehalem) reaches parity in performance and power
efficiency with NVIDIA’s most advanced GPU archi-
tecture. Our results lay solid foundations for future
ultra-scalable KIFMM implementations on current and
emerging high-end systems.

2 Fast Multipole Method
This section provides an overview of the fast multi-

pole method (FMM), summarizing the key components
that are relevant to this study. For more in-depth algo-
rithmic details, see Greengard, et al. [5, 16].
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Figure 1. U, V, W, and X lists of a tree node
B for an adaptive quadtree in 2-D.

Given a system of N source particles, with positions
given by {y1, . . . , yN}, and N targets with positions
{x1, . . . , xN}, we wish to compute the N sums,

f(xi) =
N∑
j=1

K(xi, yi) · s(yj), i = 1, . . . , N (1)

where f(x) is the desired potential at target point x;
s(y) is the density at source point y; and K(x, y) is
an interaction kernel that specifies “the physics” of the
problem. For instance, the single-layer Laplace ker-
nel, K(x, y) = 1

4π
1

||x−y|| , might model electrostatic or
gravitational interactions.

Evaluating these sums appears to require O(N2) op-
erations. The FMM instead computes approximations
of all of these sums in optimal O(N) time with a guar-
anteed user-specified accuracy, where the desired accu-
racy changes the complexity constant [5].

The FMM is based on two key ideas: (i) a tree rep-
resentation for organizing the points spatially; and (ii)
fast approximate evaluation, in which we compute sum-
maries at each node using a constant number of tree
traversals with constant work per node.

We implement the kernel independent variant of the
FMM, or KIFMM [16]. KIFMM has the same structure
as the classical FMM [5]. Its main advantage is that it
avoids the mathematically challenging analytic expan-
sion of the kernel, instead requiring only the ability to
evaluate the kernel. This feature of the KIFMM allows
one to leverage our optimizations and techniques and
apply them to new kernels and problems.

Tree construction: Given the input points and a
user-defined parameter q, we construct an oct-tree T (or
quad-tree in 2-D) by starting with a single box repre-
senting all the points and recursively subdividing each
box if it contains more than q points. Each box (octant

in 3-D or quadrant in 2-D) becomes a tree node whose
children are its immediate sub-boxes. During construc-
tion, we associate with each node one or more neighbor
lists. Each list has bounded constant length and contains
(logical) pointers to a subset of other tree nodes. These
are canonically known as the U , V , W , and X lists. For
example, every leaf box B ∈ leaves(T ) has a U list,
U(B), which is the list of all leaves adjacent to B. Fig-
ure 1 shows a quad-tree example, where neighborhood
list nodes for B are are labeled accordingly.

Tree construction has O(N log N) complexity, and
so the O(N) optimality refers to the evaluation phase
(below). However, tree construction is typically a small
fraction of the total time; moreover, many applications
build the tree periodically, thereby enabling amortiza-
tion of this cost over several evaluations.

Evaluation: Given the tree T , evaluating the sums
consists of six distinct computational phases: there is
one phase for each of the U , V , W , and X lists, as well
as upward (up) and downward (down) phases. These
phases involve traversals of T or subsets of T . Rather
than describe each phase in detail, which are well-
described elsewhere [5,15,16], we summarize the main
algorithmic characteristics of each phase in Table 1.

For instance, in the U list phase, we traverse all leaf
nodes, where for each leaf node B ∈ leaves(T ) we per-
form a direct evaluation between B and each of the
nodes B′ ∈ U(B). For each leaf B, this direct eval-
uation operates on O(q) points and has a flop cost of
O(q2) for each box. By contrast, the V-list operates on
O(q) points and performs O(q log q) flops for each box,
and so has lower computational intensity. Generally, we
expect the cost of the U-list evaluation phase to domi-
nate other phases when q is sufficiently large.

There are multiple levels of concurrency during eval-
uation: across phases (e.g., the upward and U-list phases
can be executed independently), within a phase (e.g.,
each leaf box can be evaluated independently during
the U-list phase), and within the per-octant computation
(e.g., vectorizing each direct evaluation). In this paper,
we consider intra-phase and per-octant parallelization
only, essentially using OpenMP and manual SIMD par-
allelization, respectively. For the Upward and Down-
ward phases, which both involve tree traversals, there
is a obvious dependency between a parent and its child
boxes. However, the children themselves are indepen-
dent and can be computed concurrently with the amount
of work per level increasing toward the leaves.

Related work: For parallel FMM, most of the re-
cent work of which we are aware focuses on distributed
memory codes with GPU-based acceleration [1,6,9,12].
Indeed, the present study builds on our own state-of-the-
art parallel 3-D KIFMM implementation, which uses
MPI+CUDA [9]. However, these works have not yet
considered conventional multicore acceleration and tun-
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Phase Computational Complexity Algorithmic Characteristics

Upward O(Np + Mp2) postorder tree traversal, small† matvecs
U-list O(27Nq) direct computation as in Equation 1 (matvecs on the order of q)
V-list O(Mp3/2logp + 189Mp3/2) consists of small FFTs, pointwise vector multiplication (convolution)

X-list
0 uniform distribution

matvecs
O(Nq) non-uniform distribution

W-list
0 uniform distribution

matvecs
O(Nq) non-uniform distribution

Downward O(Np + Mp2) preorder tree traversal, small† matvecs

Table 1. Characteristics of the computational phases in KIFMM. N is the number of source par-
ticles, the number of boxes is M ∼ N/q and p denotes the number of expansion coefficients.
The user chooses p to trade-off time and accuracy, and may tune q to minimize time. †Size is
determined by the chosen accuracy, generally smaller than q.

ing. In Section 5, we compare our multicore optimiza-
tions to this prior use of GPU acceleration, with the per-
haps surprising finding that a well-tuned multicore im-
plementation can match a GPU code. Coulaud, et al.,
propose Pthreads- and multithreaded BLAS-based mul-
ticore parallelization within node [3]. However, we use
a larger set of optimizations and provide cross-platform
performance and power analysis.

There are numerous non-GPU studies of single-core
distributed memory FMM implementations [8, 11] (see
also references in Ying, et al. [15]), most based on
the classical tree-based N-body framework of Warren
and Salmon [14], including our own prior KIFMM
work [9, 15]. Researchers have considered a variety
of data structures with attractive communication prop-
erties, again in the distributed context [7]. To our
knowledge, the present study is the first to consider ex-
tensive multicore-centric optimizations, data structures,
and cross-platform analysis.

For direct O(N2) methods, tuning, and special-
purpose hardware (e.g. MDGRAPE), see the references
in related papers [2, 10].

3 Experimental Setup

We explore FMM performance as we vary architec-
ture, floating-point precision, and initial particle distri-
bution. To facilitate comparisons to prior work, we se-
lect a commonly used kernel K (Laplace kernel in Sec-
tion 2). The desired accuracy is fixed to a typical min-
imum setting that is also sensible for single-precision
(yielding 4–7 decimal digits of accuracy). Moreover,
because tuning can dramatically change the requisite
number of floating-point operations, we define and de-
fend our alternate performance metrics. These aspects
are discussed in detail below.

3.1 Architectures

This section summarizes the key differences, as they
pertain to the FMM, among the three dual-socket multi-
core SMPs used in this study: Intel’s quad-core Xeon
(Nehalem), AMD’s quad-core Opteron (Barcelona),
and Sun’s chip-multithreaded, eight-core UltraSparc
T2+ (Victoria Falls). Our final analysis references our
prior GPU-only accelerated results [9]. The key param-
eters of these systems appear in Table 2.

Basic microarchitectural approach: Nehalem
and Barcelona are x86, superscalar, out-of-order ar-
chitectures with large per-thread caches and hardware
prefetchers. Victoria Falls, by contrast, employs fine-
grained chip multithreading (CMT) and smaller per-
thread caches. Consequently, Victoria Falls requires
the programmer to express roughly an order of mag-
nitude more parallelism than the x86 systems in order
to achieve peak performance or peak bandwidth. Luck-
ily, there is ample fine-grained thread-level parallelism
in the FMM.

Computational peak: The two x86-based sys-
tems have similar peak floating-point performance, but
4× higher than Victoria Falls partly due to the SIMD
units on x86. SIMD enables up to to 4 flops (multiply
and add) per cycle per core in double-precision (DP)
and 8 in single-precision (SP). Because the FMM has
high computational intensity in at least one of its major
phases (U-list), we may expect superior performance on
the x86 systems compared to Victoria Falls.

Unfortunately, many kernels K(x, y) also require
square root and divide operations, which on all three
systems are not pipelined and therefore are extremely
slow. For example, on Nehalem, double-precision di-
vide and square root run at 0.266 GFlop/s (5% of peak
multiply/add performance) and 0.177 GFlop/s (3%), re-
spectively. To address this deficiency, both x86 systems
(but not Victoria Falls) have a low latency and pipelined
single-precision approximate reciprocal square-root op-
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Intel X5550 AMD 2356 Sun T5140 NVIDIA T10P
Architecture (Nehalem) (Barcelona) (Victoria Falls) (S1070)

Frequency (GHz) 2.66 GHz 2.30 GHz 1.166 GHz 1.44 GHz
Sockets 2 2 2 2 (+2 CPUs)

Cores/Socket 4 4 8 30 (GPU)
Threads/Core 2 1 8 8 (GPU)

SIMD (DP, SP) 2-way 4-way 2-way 4-way 1 1 1 8-way
GFlop/s (DP, SP) 85.33 170.6 73.60 146.2 18.66 18.66 N/A 2073.6
rsqrt/s∗ (DP, SP) 0.853 42.66 0.897 73.60 2.26 — N/A 172.8
L1/L2/L3 cache 32/256/8192† KB 64/512/2048† KB 8/4096† KB —

local store — — — 16 KB
DRAM Bandwidth 51.2 GB/s 21.33 GB/s 64.0 GB/s 204 GB/s

Power 375W 350W 610W 325W+400W‡

Compiler icc 10.1 icc 10.1 cc 5.9 nvcc 2.2

Table 2. Architectural Parameters. All power numbers, save the GPU, we obtained using a
digital power meter. ∗reciprocal square-root approximate. †shared among cores on a socket.
‡max server power (of which the 2 active CPUs consume 160W) plus max power for two GPUs.

eration ( 1√
x

) that we can exploit to accelerate double-
precision computations [10].

Memory systems: Nehalem has a much larger L3
cache and much higher peak DRAM bandwidth. This
should enable better performance on kernels with large
working sets. However, Nehalem also has smaller L1
and L2 caches, yielding a per-thread cache footprint that
is 1

4 that of Barcelona, suggesting performance will be
similar for computations with small working sets and
high computational intensity. The FMM phases exhibit
a mix of input-dependent behaviors, and so the ultimate
effects are not entirely clear a priori.

Comparisons to GPU: Our prior work applied GPU
acceleration to KIFMM on the NCSA Lincoln Clus-
ter [9], where each node is a dual-socket × quad-core
Xeon 5410 (Harpertown) CPU server paired with two
NVIDIA T10P GPUs. We use the CPUs only for con-
trol, and run all phases (except tree construction) on
the GPUs. That is, there is one MPI process on each
socket, and each process is assigned to one GPU; pro-
cesses communicate via message passing and to their
respective GPUs via PCIe. For our energy comparisons,
we bound power using two configurations: aggregate
peak GPU power plus zero CPU power, and aggregate
peak GPU power plus the peak CPU power. With 12×
the compute capacity and over 5× the bandwidth, one
would naı̈vely expect the GPU implementation to con-
siderably outperform all other platforms.

3.2 Kernel, Precision, and Accuracy

In this section, we describe the interaction kernel,
precision, and desired accuracy, and their implications
for implementation and optimization.

Kernel: Following prior work, we use the single-
layer Laplacian kernel (Section 2) owing to its widely-

recognized importance [16].
Precision: We consider both single and double-

precision in our study. Single-precision is an interest-
ing case for a variety of reasons. First, an application
may have sufficiently low accuracy requirements, due
to uncertainty in the input data or slow time-varying be-
havior. In this case, using single-precision can yield sig-
nificant storage and performance benefits. Next, on cur-
rent x86 architectures, SIMD instructions are 2-wide in
double precision and 4-wide in single. However, forth-
coming x86 Advanced Vector Extensions (AVX) will
double these widths. As such, using single precision
SIMD on today’s Nehalem is a proxy for double preci-
sion performance on tomorrow’s Sandy Bridge. Finally,
current architectures provide fast reciprocal square-root
methods in single-precision, but not double. By explor-
ing the benefits in single, we may draw conclusions as
to potential benefit future architectures may realize by
implementing equivalent support in double.

Accuracy: One of the inputs to FMM is numerical
accuracy desired in the final outcome, expressed as the
desired “size” of the multipole expansion. In our exper-
iments, we choose the desired accuracy to deliver the
equivalent of 6 decimal digits in double-precision and
4 digits in single. We verify the delivered accuracy of
our all of our naı̈ve, optimized, parallel, and tuned im-
plementations.

3.3 Particle Distributions

We examine two different particle distributions
namely, a spatially uniform and a spatially non-uniform
(elliptical or ellipsoidal) distribution. The uniform case
is analyzed extensively in prior work; the non-uniform
case is where we expect tree-based methods to deliver
performance and accuracy advantages over other nu-
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SIMDization — x86 x86 — x86 x86 x86
Newton-Raphson N/A x861 x861 N/A x861 x861 x861

SOA∗ layout x86 x86 x86 x86 x86 x86 x86
Matrix-free N/A X X X X X X

FFTW N/A N/A N/A X N/A N/A N/A

OpenMP — X X X X X X
Tuning for best q X X X X X X X

Table 3. FMM optimizations attempted in
our study for Nehalem and Barcelona
(x86) or Victoria Falls (VF). ∗Structures
of arrays (SOA) layout. 1double-precision
only. A “X” denotes all architectures, all
precisions.

merical paradigms (e.g., particle-mesh methods). In
both cases, our test problems use 4 million source parti-
cles plus an additional 4 million target particles.

Uniform: In this case, we distribute points uniformly
at random within the unit cube. In 3D, for boxes
not on the boundary, the U-list (neighbor list) contains
27 boxes and the V-list (interaction list) contains 189
boxes. The X- and W-lists are empty since the neigh-
bors of a box are adjacent boxes in the same level. Thus,
the time spent in the various list computations will dif-
fer from the non-uniform case and tuning will favor a
different value for q, the maximum points per box.

Elliptical: In this case, particles are angularly-
uniformly (in spherical coordinates) distributed on the
surface of an ellipsoid with an aspect ratio 1:1:4. For
an uniform distribution, a regular octree is constructed.
However, the elliptical case requires an adaptively re-
fined octree. As such, the depth of the computation tree
could be quite large, resulting in high tree construction
times as shown in Figure 5.

3.4 Performance Metrics

Since our optimizations and tuning of q can dramat-
ically change the total number of floating-point opera-
tions, we use time-to-solution (in seconds) as our pri-
mary performance metric rather than GFlop/s In our fi-
nal comparison, we present relative performance (eval-
uations per second), where higher numbers are better.

This choice has ramifications when assessing scala-
bility. In particular, rather than examining GFlop/s/core
or GFlop/s/thread to assess per-core (or per-thread) per-
formance, we report thread-seconds: that is, the prod-
uct of execution time by the number of threads. When
it comes to energy efficiency, we present the ratio rela-
tive to the optimized and parallelized Nehalem energy

efficiency (evaluations per Joule).

4 Optimizations
We applied numerous optimizations to the various

computational phases (Section 2). Beyond optimiza-
tions traditionally subsumed by compilers, we apply
numerical approximations, data structure changes, and
tuning of algorithmic parameters. Table 3 summarizes
our optimizations and their applicability to the FMM
phases and our architectures. Note that not all optimiza-
tions apply to all phases.

Figure 2 presents the cumulative benefit as each op-
timization is successively applied to the serial refer-
ence KIFMM implementation [16]. We will refer to
this figure repeatedly as we describe each optimiza-
tion. If an optimization has associated tuning param-
eters (e.g.unrolling depth), we tune it empirically.

4.1 SIMDization

We found it necessary to apply SIMD vectoriza-
tion manually, as the compiler was unable to do so.
All Laplacian kernel evaluations and point-wise matrix
multiplication (in the V-list) are implemented using SSE
intrinsics; specifically, in double-precision, we use SSE
instructions like addpd, mulpd, subpd, divpd, and
sqrtpd. Note that the Laplacian kernel performs 10
flops (counting each operation as 1 flop) per pairwise
interaction, and includes both a square-root and divide.

In single-precision on x86, there is a fast
(pipelined) approximate reciprocal square-root instruc-
tion: rsqrtps. As such, with sufficient instruction-
and data-level parallelism, we may replace the tradi-
tional scalar fsqrt/fdiv combination with not sim-
ply a sqrtps/divps combination, but entirely with one
rsqrtps. Doing so enables four reciprocal square-root
operations per cycle without compromising our particu-
lar accuracy setting.

Figure 2 shows the speedup from SIMDization. The
top three figures in Figure 2 use an uniform particle dis-
tribution and the bottom three use an elliptical distribu-
tion. SIMD nearly doubles Nehalem performance for all
kernels except V-list, where FFTW (see Section 4.5) is
already SIMDized. The benefit on Barcelona was much
smaller (typically less than 50%), which we will inves-
tigate in future work. As there are no double precision
SIMD instructions in SPARC/Victoria Falls, SIMD re-
lated optimizations are not applicable.

4.2 Fast Reciprocal Square Root

A conventional double-precision SIMDized code
would perform the reciprocal square-root operation
using the intrinsics sqrtpd and divpd as above.
Unfortunately, these instructions have long latencies
(greater than 20 cycles) and cannot be pipelined,
thus limiting performance. As we have abundant
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Figure 2. Speedup over the double-precision reference code. Top: Uniform distribution. Bot-
tom: Elliptical distribution. Note, W- and X- lists are empty for the uniform case. SIMD,
Newton-Raphson, and data structure transformations were not implemented on Victoria Falls.

instruction-level parallelism, we can exploit x86’s
fast single-precision reciprocal square-root instruction
to accelerate the double-precision computations [10].
That is, we replace the sqrtpd/divpd combination
with the triplet, cvtpd2ps (convert double to sin-
gle)/rsqrtps/cvtps2pd (single to double). To attain
the desired accuracy, we apply an additional Newton-
Raphson refinement iteration. This approach requires
more floating-point instructions, but they are low la-
tency and can be pipelined.

Figure 2 shows that the Newton-Rapshon approach
improves Nehalem performance by roughly 100% over
SIMD. Since there are relatively few kernel evaluations
in the V-list, we don’t see an appreciable benefit. Sur-
prisingly, the benefit on Barcelona is relatively modest;
the cause is still under investigation.

4.3 Structure-of-Arrays Layout

Our reference implementation uses an array-of-
structures (AOS) data structure where all compo-
nents of a point are stored contiguously in memory
(e.g. x1, y1, z1, x2, y2, z2, ..., xn, yn, zn). This layout is
not SIMD-friendly as it requires a reduction across ev-

ery point and unrolling the inner loop twice (or 4 times
in single-precision).

Instead, we explore using the structure-of-arrays
(SOA) or structure splitting layout [17] in which the
components are stored in separate arrays. This transfor-
mation simplifies SIMDization since we can load two
(or four) components into separate SIMD registers us-
ing a single instruction.

Changing the data layout further improved the over-
all U-list performance on Nehalem up to 300% speedup
over the reference. The transformation does not affect
the V-list phase due to its relatively low computational
intensity. Moreover, the data layout change substan-
tially improved Barcelona performance on most phases.

Unfortunately, the data layout change increased
tree construction time due to lack of spatial local-
ity. This tradeoff (dramatically reduced computational
phase time for slightly increased tree construction time)
is worthwhile if tree construction time is small com-
pared to the total evaluation execution time.
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4.4 Matrix-free calculations

To use tuned vendor BLAS routines, our reference
code explicitly constructs matrices to perform matrix-
vector multiplies (matvecs), as done by others [3]. How-
ever, we can apply what is essentially interprocedural
loop fusion to eliminate this matrix, instead construct-
ing its entries on-the-fly and thereby reducing the cache
working set and memory traffic.

For example, recall that the U-list performs a direct
evaluation like Equation 1, which is a matvec, between
two leaf boxes. Rather than explicitly constructing the
kernel matrix K and performing the matvec, we can
fuse the two steps and never store this matrix, reducing
the memory traffic from O(q2) to O(q), if the maximum
points per box is q. The idea applies to the Up(leaf), W-
list, X-list, and Down(leaf) phases as well; the matrices
arise in a different way, but the principle is the same.

As seen in Figure 2, this technique improves Ne-
halem performance by an additional 25%, and often
improved Barcelona and Victoria Falls performance by
better than 40%. Cumulatively including this optimiza-
tion (aside from V-list) improved Nehalem performance
by more than 400%, Barcelona by more than 150%, and
Victoria Falls by 40%.

4.5 FFTW

In our KIFMM implementation, the V-list phase con-
sists of (i) small forward and inverse FFTs, once per
source/target box combination; and (ii) pointwise mul-
tiplication I times for each target box, where I is the
number of source boxes in said target box’s V-list.

Local FFTs are performed using FFTW [4]. Typ-
ically, one executes an FFTW plan for the array
with which the plan was created using the function
fftw execute. As the sizes and strides of the FFTs
in V-list are not only quite small but are also identi-
cal, we may create a single plan and reuse it for mul-
tiple FFTs, using the fftw execute dft r2c func-
tion. We ensure alignment by creating the plan with
the FFTW UNALIGNED flag coupled with an aligned
malloc().

FFTW only benefits V-list computations. Neverthe-
less, on both x86 machines, FFTW substantially im-
proved V-list performance for elliptical distributions.
The benefit on uniform distributions was less dramatic
since the relative time spent in the V-list tends to be
smaller. Unfortunately, Victoria Falls saw little benefit
from the plan reuse within FFTW; this will be addressed
in future work.

4.6 Tree Construction

There are numerous studies of parallel tree construc-
tion [1,7,13]. In this paper, we focus on accelerating the
evaluation phases of FMM for two main reasons. First,
tree construction initially constituted a small fraction of

execution time. Second, in many real simulation con-
texts, particle dynamics may be sufficiently slow that
tree reconstruction can be amortized. Future work will
involve parallelization of tree construction keeping in
mind both uniform and non-uniform distributions.

4.7 Parallelization and Tuning

After applying serial optimization, we parallelize all
phases via OpenMP. We apply inter-box parallelization
for all phases except Upward and Downward. That is,
we assign a chunk of leaf boxes to each thread and ex-
ploit parallelism within each phase. For Upward and
Downward which has dependencies across the levels of
the tree, we exploit the concurrency at each level. By
convention, we exploit multiple sockets, then multiple
cores, and finally threads within a core.

Algorithmically, the FMM is parameterized by the
maximum number of particles per box, q. As q grows,
the U-list phase quickly increases in cost even as other
phases become cheaper as the tree height shrinks; this
dependence is non-trivial to predict, particularly for
highly non-uniform distributions. We exhaustively tune
q for each implementation on each architecture, as dis-
cussed in Section 5. Auto-tuning q will be the subject
of our future work.

5 Performance Analysis
The benefits of optimization, threading, and tuning

are substantial. When combined, these methods deliv-
ered speedups of 25×, 9.4×, and 37.6× for Nehalem,
Barcelona, and Victoria Falls, respectively, in double-
precision for the uniform distribution; and 16×, 8×, and
24×, respectively, for the elliptical case. In this section
we first tune our parallel implementation for the FMM’s
key algorithmic parameter, q, the maximum particles
per box. We then analyze the scalability for each ar-
chitecture. Finally, we compare the performance and
energy efficiency among architectures.

5.1 Tuning particles per box

Figure 3(a) presents the FMM execution time as a
function of optimization, parallelization, and particles
per box q on Nehalem with an elliptical particle distri-
bution. Although we performed this tuning for all archi-
tectures, particle distributions, and precisions, we only
present Nehalem data due to space limitations.

The optimal setting of q varies with the level of op-
timization, with higher levels of optimization enabling
larger values of q. Since we did not parallelize tree con-
struction, we consider just the evaluation time in Fig-
ure 3(b). Thus, one should only tune q (or other pa-
rameters affected by parallelization) after all other opti-
mizations have been applied and tuned.

Figure 3(c) decomposes evaluation time by phase.
The Upward traversal, Downward traversal, and V-list
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Figure 3. Tuning q, the maximum number of particles per box. Only Nehalem, elliptical distri-
bution data is shown. There is contention between decreasing Up, Down, and V-list time, and
increasing U-list time. Note, tree construction time scales like Up, Down, and V-list times.

execution times decrease quickly with increasing q.
However, execution time for the other lists, especially
U-list, grow with increasing q. Observe a crossover
point of q = 250 where time saved in Up, Down, and V-
list can no longer keep pace with the quickly increasing
time spent in U-list.

5.2 Scalability

Exploiting multicore can be challenging as multi-
ple threads share many resources on a chip like caches,
bandwidth, and even floating-point units. Thus, the ben-
efit of thread-level parallelism may be limited.

Figure 4 presents the performance scalability by ar-
chitecture as a function of thread-level parallelism for
the double-precision, uniform distribution case (thus,
has no W or X list phases). Threads are assigned first
to multiple sockets before multiple cores, and multiple
cores before simultaneous multithreading (SMT). For
clarity, we highlight the SMT region explicitly. On all
machines, the 2 thread case represents one thread per
socket.

The top figures show overall times for two cases: (i)
assuming tree construction before evaluation, and (ii)
the asymptotic limit in which the tree is constructed
once and can be infinitely reused. (Recall that tree con-
struction was the only kernel not parallelized.) Observe
that Nehalem delivers very good scalability to 8 threads
at which point HyperThreading provides no further ben-
efit. Unfortunately, the time required for tree construc-
tion becomes a substantial fraction of the overall time.
Thus, further increases in core count will deliver sublin-
ear scaling due to Amdahl’s Law.

In the bottom figures, we report thread-seconds to
better visualize the scalability of the code for each
phase. A flat line denotes perfect scalability and a posi-
tive slope denotes sublinear scaling. The U-list initially

dominates the overall evaluation time and delivers very
good scalability to 8 cores. This observation is not sur-
prising since this phase has high arithmetic intensity.
However, the V-list computations, which initially con-
stitute a small fraction of overall time, show relatively
poorer scalability, eventually becoming the bottleneck
on Nehalem. The V-list has the lowest arithmetic inten-
sity and is likely suffering from bandwidth contention.
The other two kernels show good scalability to 4 cores,
but remain a small fraction of the overall time.

Barcelona shows good scalability to four cores (2 per
socket) but little thereafter. The bottom figure shows the
problem: U-list scalability varies some but is reasonably
good, while the V-list scales poorly and eventually con-
stitutes 50% more time than U-list. Given Barcelona’s
smaller L3 cache and diminished bandwidth, the effects
seen on Nehalem are only magnified.

Victoria Falls, with its ample memory bandwidth and
paltry floating-point capability, scales perfectly to 16
cores (lines are almost perfectly flat). Once again, per-
formance is dominated by the U-list. As multithreading
within a core is scaled, the time required for U-list sky-
rockets. Although, we manage better than a 2× speedup
using four threads per core, we see none thereafter.

Figure 5 extends these results to the non-uniform
elliptical distribution, which will now include W- and
X-list phases. On x86, for the same number of parti-
cles, the elliptical time-to-solution is less than the uni-
form case. This occurs because more interactions can
be pruned in the non-uniform case. However, as a con-
sequence, tree construction also becomes a more severe
impediment to scalability.

As with the uniform distribution, evaluation time
scales well on Nehalem up to 8 threads (one thread per
core). Thereafter, it reaches parity with tree construc-
tion time. Additional cores or optimization yield only
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Figure 4. Double-precision, multicore scalability using OpenMP for a uniform particle distribu-
tion. Top: time as a function of thread concurrency showing relative time between list evalu-
ations and tree construction. Bottom: break down of evaluation time by list. Note: “Thread-
seconds” is essentially the inverse of GFlop/s/core, so flat lines denote perfect scaling:

an additional 2× speedup. Also observe that the rela-
tive time of each phase changes. U-list time dominates
at all concurrencies, and V-list time scales well since the
V-lists happen to have fewer boxes for this distribution.

The behavior on Barcelona is similar except, the U-
list time scales somewhat more poorly with the elliptical
distribution than in the uniform case. Interestingly, most
phases scale poorly in the multicore region on Victoria
Falls, though U-list time still dominates.

5.3 Architectural Comparison

Beyond the substantial differences among architec-
tures in serial speedups, tuning, and multicore scalabil-
ity, we observe that the raw performance among pro-
cessors differs considerably as well. Moreover, perfor-
mance varies dramatically with floating-point precision.

Figure 6 compares the double-precision performance
for our three machines for both particle distributions.
For each distribution, performance is normalized to the
reference Nehalem implementation. Initially, Nehalem
is only about 25% faster than Barcelona; however, af-
ter optimization, parallelization, and tuning, Nehalem

is more than 3× faster. Although the initial perfor-
mance differences are expected given the differences in
frequency, the final difference is surprising as Nehalem
has comparable peak performance and only about twice
the bandwidth. Moreover, and unexpectedly, with only
4.5× the peak flops Nehalem is as much as 10× faster
than Victoria Falls. Victoria Falls’ small per-thread
cache capacity may result in a large number of cache
misses. Across the board, we observe the benefit of tree
construction amortization is nearly a factor of two.

Unlike the scalar Victoria Falls, x86 processors can
more efficiently execute single-precision operations us-
ing 4-wide SIMD instructions. GPUs take this approach
to the extreme with an 8-wide SIMD-like implementa-
tion. To that end, we repeated all optimizations, par-
allelization, and tuning for all architectures and distri-
butions in single-precision. We then re-ran the GPU-
accelerated code of prior work by Lashuk, et al. [9].

For the GPU comparison, we consider 1 node (2
CPU sockets) with either 1 GPU or 2 GPUs. The
GPUs perform all phases except tree construction, with
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Figure 5. Double-precision, multicore scalability using OpenMP for an elliptical particle dis-
tribution. Top: Time as a function of thread concurrency, comparing evaluations and tree
construction components. Bottom: Breakdown of evaluation time by list. Note: “Thread-
seconds” is essentially the inverse of GFlop/s/core, so flat lines indicate perfect scaling.

the CPU used only for control and thus largely idle.
This experiment allows us to compare not only different
flavors of homogenous multicore processors, but also
compare them to heterogeneous computers specialized
for single-precision arithmetic. Note that the GPU times
include host-to-device data structure transfer times.

These single-precision results appear in Figure 6.
Barcelona saw the most dramatic performance gains of
up to 7.2× compared with double-precision. This gain
greatly exceeds the 2× increase in either the peak flop
rate or operand bandwidth. Nehalem’s gains, around
4×, were also surprisingly high. Victoria Falls typi-
cally saw much less than a factor of two performance
increase, perhaps due to nothing more than the reduc-
tion in memory traffic. We attribute this difference to
x86’s single-precision SIMD advantage, as well as the
ability to avoid the Newton-Raphson approximation in
favor of one rsqrtps (reciprocal square root approxi-
mation) instruction without loss of precision.

Although Nehalem’s performance advantage over
Victoria Falls increased to as much as 21×, its advan-

tage over Barcelona dropped to as little as 1.6× —
which is still high given the architectural similarities.

Perhaps the most surprising result is that with op-
timization, parallelization, and tuning, Nehalem is up
to 1.7× faster than one GPU and achieves as much as
3
4× the 2-GPU performance. Where Nehalem’s optimal
particles per box was less than 250, GPUs typically re-
quired 1K to 4K particles per box. In order to attain a
comparable time-to-solution, the GPU implementation
had to be configured to prioritize the computations it
performs exceptionally well — the computationally in-
tense regular parallelism found in U-list.

5.4 Energy Comparison

We measured power usage using a digital power me-
ter for our three multicore systems. As it was not pos-
sible to take measurements on the remote GPU-based
system, we include two estimates: peak power (assum-
ing full GPU and full CPU power) and maximum GPU-
only power (assuming the CPUs consume zero power).
We report the resultant power efficiency relative to par-
allelized and tuned Nehalem (higher is better). Figure 7
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Figure 6. Performance relative to out-of-the-box Nehalem for each distribution. Note, perfor-
mance is on a log scale. Labels show the final execution time (secs) after all optimizations.

shows this relative energy-efficiency as a function of ar-
chitecture, distribution, and precision.

Nehalem still manages a sizable energy efficiency
over all other CPU architectures, although its energy ad-
vantage over Barcelona is less than its performance ad-
vantage. Conversely, the FBDIMM-based Victoria Falls
consumes at least 66% more power than any other CPU-
based machine. As such, for FMM, Nehalem is as much
as 35× more energy-efficient than Victoria Falls.

The GPU-based systems, by our estimates, con-
sumes as much as 725W. Thus, Nehalem is as much
as 2.37× and 1.76×more energy-efficient than systems
accelerated using 1 or 2 GPUs, respectively. Even un-
der the optimistic assumption that the largely idle CPUs
consumed no power, then Nehalem’s energy-efficiency
is still between 0.97× and 1.65×.

6 Conclusions
Given that single-node multicore performance and

power efficiency will be critical to scalability on next-
generation extreme scale systems, we believe our exten-
sive study of parallelization, low-level and algorithmic
tuning at run-time (i.e. the input-dependent maximum
points per box, q), numerical approximation, and data
structure transformations contributes a solid foundation
for the execution of FMM on such machines.

Surprisingly, given a roughly comparable implemen-
tation effort, a careful multicore implementation can de-
liver performance and energy efficiency on par with that
of a GPU-based approach, at least for the FMM [9]. We
believe this finding is a significant data point in our col-

lective understanding of the strengths and limits of us-
ing heterogeneous computers.

Looking forward, we see numerous opportunities.
First, we relied largely on bulk-synchronous paral-
lelism, which resulted in working sets that did not fit in
cache. Dataflow and work-queue approaches may mit-
igate this issue. Next, optimal algorithmic parameters
like particles per box will vary not only with architec-
ture, but also optimization and scale of parallelism. Fi-
nally, our manual SIMD transformations and their inter-
action with data layout was a significant performance
win, and should be a priority for new compiler and/or
programming model efforts.
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